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Abstract We have studied the properties of simple
models of linear and star-branched polymer chains
confined in a slit formed by two parallel impenetrable
walls. The polymer chains consisted of identical united
atoms (homopolymers) and were restricted to a simple
cubic lattice. Two macromolecular architectures of the
chain: linear and regular stars with three branches of
equal length, were studied. The excluded volume was the
only potential introduced into the model and thus the
system was athermal. Monte-Carlo simulations with the
sampling algorithm based on the chain’s local changes of
conformation were carried out for chains with different
lengths as well as for different distances between the
confining surfaces. We found that the properties of
model chains differ for both macromolecular architec-
tures but a universal behavior for both kinds of chains
was also found. Investigation of the frequency of chain-
wall contacts shows that the ends of the chains are much
more mobile than the rest of the chain, especially in the
vicinity of the branching point in star polymers.

Keywords Confined chains Æ Lattice models Æ
Monte-Carlo simulations Æ Polymer structures Æ
Star branched polymers Æ Confined polymers

Introduction

The problem of the confinement of molecules not only
has an important meaning for theoretical considerations
but also practical consequences in such fields as mate-
rials science and engineering [1]. The confinement in
which we are interested takes place when the size of the

molecules is comparable with the size of the confined
space. In such a case the effects caused by a significant
reduction of the configuration space can be observed.
The confinement affects both the static and dynamic
properties of the system. The geometrical confinement
‘squeezes’ the molecules and changes their dimensions.
Also the confinement can be treated as steric obstacles
and its presence strongly changes the freedom of the
molecules’ motions. One can find many examples of
confined polymer chains in such systems as biological
microstructures, systems of lubricants and adhesives,
problems of liquid flow, capillary electrophoresis, and
corrosion-protective coatings. The properties of linear
polymer chains in layers, in microstructures, and in
biosystems were studied recently theoretically [2–10].
The major conclusions of these studies were that the
properties of polymer chains depend mainly on the ratio
between the dimensions of the molecule and the
dimensions of the confinement. One has to remember
that substantial changes of polymer properties can be
caused by the presence of a repulsive, adsorbing or
patterned surfaces. Theoretical investigations of this
problem on the basis of the Scheutjens-Fleer mean-field
model were used successfully for the case of polymer
adsorption on a surface [11, 12]. A scaling analysis of the
polymer near the surface system was given by de Gennes
[13] with special interest paid to the structure of the
polymer film. They found that there were two regimes in
density profiles. The segment density decays exponen-
tially in the vicinity of the wall, whereas the decay was
slower for longer distances from the wall.

Since the majority of the work described above was
devoted to confined linear polymer chains, we decided to
start investigations on the behavior of branched chains
in a confined space. Such objects sometimes exhibit
properties different from their linear counterparts. The
simplest model of a non-linear chain is a star-branched
polymer that contains three chains (branches) emanating
from a common origin. Such polymer chains can also be
synthesized and experimental studies can be performed
[14, 15]. The differences between the linear and branched
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molecules are mostly caused by the different distribu-
tions of monomers in the coil.

In the last two decades, simple lattice models of star-
branched chains were constructed and studied by means
of Monte-Carlo simulations [16–19]. It was shown that
even simple and coarse-grain models can give results
showing the structure of a star-branched polymer chain.
In our previous paper, we presented a study of the
dimensions of confined star-branched polymer chains in
a slit formed by two impenetrable surfaces [18, 19]. It
was possible to describe the behavior of the chain’s size
with one universal ‘master’ curve, which was valid for all
chain lengths and all sizes of the slit. Some dynamic
properties of star-branched chains were also studied. We
showed that the self-diffusion coefficient did not change
monotonically with the distance between the confining
surfaces. A possible explanation of this fact was that the
mechanism of motion changes on going from a three-
dimensional to two-dimensional polymer chain. Since an
influence of confinement on the properties of macro-
molecules is observed, one can try to compare the
presence of confinement on polymers of different archi-
tecture, namely the linear and star-branched chains.
Refs. [18, 19] were devoted entirely to star-branched
polymers and these studies were focused on the dynamic
properties of the systems.

In this paper, we investigate polymer chains of dif-
ferent macromolecular architecture in order to deter-
mine the influence of the chain’s topology on differences
in static properties. Previous such comparative studies
were successful in showing the impact of the macro-
molecular architecture on the coil-globule transition
[20]. This paper is organized as follows. We describe the
model and present the method of simulation used. In the
next section, the results are presented and discussed.
Finally, the main conclusions are presented.

The model and the algorithm

We studied properties of two different polymer-chain
topologies; linear and star-branched chains. Linear
chains consisted of a sequence of N connected beads,
while star polymers were built of F=3 linear chains
(arms) of equal length n emanating from a common
origin called the branching point. Therefore, in the latter
case the total number of beads in the chain was N=F
(n�1)+1. Each polymer bead can be treated as a united
atom representing some monomers of a real macromo-
lecular chain. The model chains were built on a simple
cubic lattice in order to make the simulations more
efficient. This simplification is sufficient for our studies
as we studied properties of the chain as a whole. The
excluded volume was the only interaction included in the
model. The polymer chains were confined to a slit
formed by two impenetrable walls. These confining
surfaces were purely repulsive and there was no chain
adsorption and thus the influence of the walls had only
entropic character. The absence of the polymer-wall and

polymer–polymer interactions (see e.g. Ref. [21]) was
intentional and we therefore modeled infinitely diluted
macromolecules at good solvent conditions. The idea of
the model studied is shown in Fig. 1. The orientation of
the surfaces was chosen to be parallel to the xy-plane.
The edge of the Monte-Carlo box was large enough to
study longer chains (L=200). Periodic boundary con-
ditions were imposed in the x and y directions only [16,
19].

A series of the Monte-Carlo simulations was carried
out to calculate the properties of the model chains. The
conformation of a chain was modified by a set of ran-
dom local moves typical for a Metropolis-like algorithm.
The procedure of preparation and equilibration of the
initial chain conformation has been described in detail
elsewhere [18, 19]. The following set of micromodifica-
tions was used for this purpose. One-bond chain-end
motion, two-bond chain-end motion, two-bond kink
motion, three-bond kink motion and three-bond 90�
crankshaft motion. For star-branched chains, an addi-
tional branching point collective motion was employed
[16]. The production simulation run consisted of 107–108

cycles. For each chain length and the size of the slit, the
simulations were repeated 20–30 times starting from
quite different initial conformations. In this paper, we
present the mean values of parameters calculated from
simulations and averaged over all runs—the relative
errors did not exceed 5%.

Results and discussion

Liner polymer chains studied consisted of N=50, 100,
200, and 400 beads. For star-branched polymers the
lengths of the arms were varied between n=17, 34, 67,
and 134 beads, making the total number of beads in the
chain N=49, 100, 199, and 400, respectively. In our
previous work, we showed that this range of chain
lengths was sufficient to study the chain’s scaling prop-
erties on a cubic lattice [18]. The size of a slit, i.e. the
distance between the confining surfaces was between
d=3 (corresponding to the shortest possible distance for
which the sampling algorithm can move the chain) up to
d=60, where even long chains were not affected
(squeezed) [18].

The size of a polymer chain is usually described by
the mean-squared radius of gyration ÆS2 æ regardless of
its internal architecture. In Fig. 2, we show the changes

d

Fig. 1 The scheme of a star-branched (left) and a linear (right)
chain located between two parallel impenetrable surfaces
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of this parameter with the distance between the confin-
ing surfaces d for some chain lengths. The changes of
both macromolecular architectures are qualitatively the
same. Reducing the distance d led initially to a slight
reduction of the chain’s size. Further reducing of the size
of the slit caused an increase of the radius of gyration.
This behavior can be explained by the fact that the chain
undergoes a transition from a three-dimensional struc-
ture to a flat, almost two-dimensional one. This transi-
tion can be confirmed by an analysis of the scaling
behavior of the mean-squared radius of gyration ÆS2 æ.
The scaling exponent is 1.19±0.01 for both architec-
tures of unconfined chains. For the strongest confine-
ment (d=3) it reaches 1.46±0.01 for star molecules and
1.50±0.01 for the linear chains, close to the predicted
value 3/2. This confirms the two-dimensional behavior
of the system under strong confinement.

It was shown previously that one can introduce a
reduced parameter in order to compare the behavior of
polymer chains in the confinement regardless of their
length and the size of the slit [2, 18]. The reduced dis-
tance between the surfaces d* defined as:

d� ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � S2h i0
p ð1Þ

where ÆS2 æ0 stands for the mean-square radius of gyra-
tion of the unconfined (free) entire star-branched chain.
Now the size of the chain will be described by the ratio
S2
� ��

S2
� �

0
: The universal behavior of star-branched

chains was recently shown. The plots of reduced size
versus the reduced distance d* were located on the same
curve regardless of the chain length and the size of the
slit [18]. The question arises if this master curve as pre-
sented is valid for both chain topologies, i.e. linear and
star-branched chains. In Fig. 3, we show the ratio
S2
� ��

S2
� �

0
as a function of the reduced distance d* for

the chains under consideration. One can observe that
data for the linear and star polymers are located along

the same master curve. This means that, despite the
different chain architectures, the changes of size can be
treated as universal in terms of reduced parameters. The
shape of the master curve is similar to those in Fig. 2, i.e.
for unreduced parameters. The longest chains show
slight deviations from this universal behavior.

Additional information about the changes of the size
and the structure of confined polymer chains can be
found by an analysis of the ratios of some parameters
describing the size of a chain [22]. At first, we consider
the ratio of the mean-squared radius of gyration ÆS2 æ to
the mean-squared center-to end distance ÆD2 æ (the dis-
tance between the branching point and the end of an
arm). Theoretical considerations give the values of this
ratio: 0.389 and 0.393 for chains without and with ex-
cluded volume, respectively [23]. In Fig. 4, one can ob-
serve changes of this ratio with the reduced size of the
slit d*. For the sake of comparison, we also show the
ratio calculated for confined linear chains. For the latter
case, we calculated this ratio by treating the linear chain
as a star-branched macromolecule consisting of two
arms with the branching point located at the middle
bead. One can observe that the ratio remains almost
constant (with some slight shift for d*< 1) in the case of
linear (around 0.35) and star-branched (at the level 0.42)
chains. The difference between the two cases is due to the
different architectures of the macromolecules, i.e. this
ratio describes a single arm (or half of a linear chain).
This behavior suggests that squeezing a star-branched
chain changes the conformation of its arms in similar
way as halves of linear chains. Below d*=1, the ratio
decreases rapidly despite of the increase of the radius of
gyration (see Fig. 2).

The next ratio we considered was earlier a frequent
measure of the dimensions for linear chains: ÆS2 æ di-
vided by the mean-squared end-to-end distance ÆR2 æ.
This ratio takes the values 0.167 and 0.157 for free
(unconfined) linear chains without and with excluded
volume, respectively [23]. For star-branched chains, the
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Fig. 2 The mean-squared radius of gyration ÆS2 æ as a function of
the distance between surfaces d. The chain lengths and the type of
macromolecules are given in the inset
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Fig. 3 The reduced radius of gyration S2
�

S2
0

� �

as a function of the
reduced distance between surfaces d*. The chain lengths and the
type of macromolecules are given in the inset
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parameter ÆR2 æ can be calculated as the mean-square
distance between a pair of ends of arms. However, one
has to remember that calculating this parameter we
‘forgot’ the presence of the third arm and, therefore, we
treated the star-branched chain as if it were the linear
structure. Obviously, the presence of the third arm was
visible as we compared the numerical results shown in
Fig. 5. The curves shown for the linear and star-bran-
ched cases are qualitatively very similar. One can clearly
distinguish the two regimes, one for d* < 1, where the
ratio increases linearly along with d*, then the maximum
is observed at d*=1. An analysis of both ratios (Figs. 4,
5) clearly shows that the center-to-end distance grows
faster than the end-to-end distance. This suggests that
pairs of arms (and halves of linear chains) are rather not
extended in opposite directions but still remain coiled
and inter-entangled.

The structure of a polymer chain in a slit was also
analyzed by investigation of the number of contacts
between polymer segments and the impenetrable sur-
faces, which can be considered a measure of the pressure
the chain exerted on the walls. It can also be treated as a
measure of the exposure of parts of the chain to the
confining walls. Therefore, one can establish the fre-
quency of these contacts with respect to the different
parts of a macromolecule. One can expect that, at least
for the moderately squeezed chains, the most frequent
contacts of polymer beads with the walls take place for
the polymer segments not hidden in the middle part of
the polymer film but for those exposed in the outer
surface of the coil. The frequency fi was defined as the
number of polymer-surface contacts of the i-th bead of
the chain per time unit. Following the idea of empha-
sizing the similarity in behavior of chains having dif-
ferent lengths, we recalculated the frequencies fi as
follows [19].

f �i ¼
fi

fh i ð2Þ

where the reduced frequency of contact of the i-th bead
fi
* was obtained by normalization of the frequency fi by
the mean value Æf æ. The result is comparable for all
chain lengths under consideration. This quantity is
shown as a function of the reduced bead number i/n. The
calculations of the frequency were performed for each
polymer bead number i separately. The numbering of
beads started from the branching point (bead# 1), ended
at the arm’s end (bead# n) and was averaged for all
arms. Figure 6 shows the mean reduced frequency of
polymer-surface contacts for star-branched chains as a
function of the reduced bead number i/n. A similar
procedure was used for the linear chains. In order to
compare the behavior of star-branched and linear
chains, we treated the linear chain as a star-branched
chain having only two branches (F=2) with the
branching point located in the middle bead of the chain
(# n/2). Following this idea, the numbers of beads were
counted starting from bead# n/2 and ending at beads#1
and# n (the results were then averaged over two bran-
ches). Figure 7 also shows the frequencies of polymer-
surface contacts for linear chains. The two plots are
similar and form a universal master curve that is inde-
pendent of the chain length and the distance between the
confining surfaces. However, one can easily find some
differences, as will be discussed later. For star-branched
chains, one can distinguish three regions in the plot: (i)
the branching point vicinity (for the reduced bead
number i/n< 0.1) in which the frequency grows with the
bead number but was visibly lower than for other parts
of the chains, (ii) the main part of the chain (for i/n
between 0.1 and 0.9) for which a plateau was observed
(some fluctuations were present) and (iii) theterminal
region (for i/n > 0.9), where the frequency rose sharply
with the bead number. A similar behavior was found for
the linear chains. However, there are only two regions in

0.0 1.0 2.0 3.0 4.0 5.0

d*

0.14

0.15

0.16

0.17

0.18

0.19

0.20
<S

2 >/
<D

2 >

  
  
  
  

 

linear 50
linear 100
linear 200
linear 400
star 49
star 199
star 400

Fig. 4 The ratio S2
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as a function of the reduced distance
between the surfaces d*. The chain lengths and the type of
macromolecules are given in the inset
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the plot: (i) the plateau for i/n < 0.8, (ii) the terminal
region with a rising frequency of contacts for i/n > 0.8.
Construction of one common curve embedding the wide
range of chain lengths and the distances between the
surfaces revealed the internal structure of confined star-
branched chains and the linear ones. The presence of the
branched structure results in a relatively dense core of
the molecule in the vicinity of the branching point [24].
The size of that core can be estimated by an analysis of
the frequency of the wall-polymer contacts. From Fig. 7
we can estimate that roughly 10% of the chain’s beads
(counted from the branching point) form a core region
of the chain in confined space. On the other hand, the
terminal 10% of beads are the most mobile and flexible
part of the chain. In the case of the linear chains, the
presence of the core of the molecule is not evident.
However, one can observe that the most flexible and
mobile part of the chain consists of the roughly 15–20%
terminal beads.

In order to confirm the above conclusions, we
analyzed the density profiles for the parts of the
chains embedding the core and middle of the chain,

respectively. The core of the star-branched chains was
taken as 10% of the inner beads. The same analysis was
used in the case of the linear chains. We show the density
profiles taken for 10% of the inner beads (counted from
the middle bead of the chain). One has to remember that
there was no core region found in the linear chain case.
The calculations are performed for the sake of com-
parison with the star chains only. The density profiles of
the beads for whom the plateau shown in Fig. 7 was
obtained (middle part of the chain—as defined
above—were also calculated. The density profiles are
shown in Fig. 6a, b for core and middle of the chains,
respectively. Note that for star-branched chains a
Gaussian-type curve is obtained with a well defined
maximum. On the other hand, the density profiles for
linear chains exhibit wide plateaus. This is additional
evidence for the lack of the core in the linear chain
systems. The middle part of chain’s density profiles
(Fig. 6b) show that there is no distinction between the
star and linear chains—the longer chains form parabolic
profiles. The short chains give the plateau region caused
by the relatively small size of the chain if we compare it
with the distance d.

Conclusions

We have studied simple models of linear and star-
branched polymers confined by two parallel impenetra-
ble walls. We employed a simple cubic lattice model of
polymer chains with excluded volume interactions only
(good solvent conditions). This model was studied by
means of the Monte-Carlo simulation method in order
to determine its average structural properties.

Comparison of confined linear and star-branched
chains shows some differences in spite of some similar-
ities. Their size holds a universal behavior and both
linear and star-branched chains undergo a transition
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Fig. 7 The reduced frequency of contacts f* as a function of the
bead reduced number i/n. The chain lengths, the type of
macromolecules and distances d* are given in the inset
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from three-dimensional state to almost two-dimensional.
Analysis of contacts between polymer beads and the
surfaces reveals that the terminal parts of the chains are
mostly exposed to the walls while the center of a mac-
romolecule remains hidden away from the walls. This
effect is more pronounced for star polymers, i.e. the size
of this screened part called ‘core’ is larger. These dif-
ferences in the chains’ structure were confirmed by an
analysis of the density profiles. The differences between
the linear and star-branched chains are also seen in plots
showing the ratios of the dimensions of the molecules.
The course of these dependencies is similar in both cases.
However, two separate curves are observed for each
chain architecture.
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